波長 478 nm/520 nm の InGaN 半導体レーザを用いた波長多重励起 Ti:Sapphire レーザ

Wavelength-multiplexed pumping with 478- and 520-nm InGaN laser diodes for Ti:sapphire laser

澤田 亮太 (M2), 田中 裕樹 (D2)

Ryota Sawada and Hiroki Tanaka

Abstract

We experimentally reveal the pump-induced loss in a Ti:sapphire laser crystal with 451-nm InGaN laser diode pumping and show that 478-nm pumping can reduce such loss. The influence of the pump-induced loss at 451-nm pumping is significant even for a crystal that exhibits higher effective FOM and excellent laser performance at 520-nm pumping. We demonstrate the power scaling of a Ti:sapphire laser by combining 478- and 520-nm InGaN laser diodes and obtain CW output power of 370 mW.

1. はじめに

近年では、青色 InGaN 半導体レーザ (Laser diode, LD)の高出力化が進んでおり、2009 年には Roth らに よって初めて LD 直接励起 Ti:sapphire レーザの CW 動 作が実現されている[1]. 同グループは、2011 年には 可 飽 和 ブ ラ ッ グ 反 射 体 (SBR, Saturable Bragg Reflector) を用いたモード同期動作を達成しており、 最大出力 13 mW、パルス幅 142 fs を得ている[2].

一方で, Roth らは波長 450 nm 付近で Ti:sapphire を 励起した際に, 励起誘起吸収と呼ばれる寄生損失が増 加する現象を報告している[1]. しかし, Durfee らはそ のような現象は観測されなかったと報告しており[4], 励起誘起吸収の存在やメカニズムは明らかになって いない.

2013 年に波長 520 nm, 定格出力 1 W の高出力緑色 InGaN-LD が開発されたことで, Ti:sapphire の吸収ピ ークにより近い波長での励起が可能となった.本研究 室では, 励起光源に波長 520 nm の LD を 1 台用いた モード同期 Ti:sapphire レーザを世界で初めて実現し ている[5]. 2015 年には, Gurel らが最大出力 1.5 W ま でオーバードライブさせたこれらの LD を 2 台用いて, SESAM (Semiconductor Saturable Absorber Mirror) を用 いない KLM を達成し,最大出力 450 mW,パルス幅 58 fs を実現し, LD 励起 Ti:sapphire レーザの技術を飛 躍的に進歩させた [6]. 一方で, InGaN-LD をオーバ ードライブさせると, LD の寿命が劣化してしまうと いった課題もあることも事実である. 今後, さらなる 高出力化を実現するには,複数台の LD を用いて励起 光源を拡張するなど新しい励起手法を採用する必要 がある.

本研究ではまず励起誘起吸収の観測実験を行なった.その後,励起誘起吸収のレーザへの影響を3つの Ti:Sapphire 結晶を用いて比較し、メカニズムに対する 考察を行なった.また,波長多重励起モード同期 Ti:Sapphire レーザ実験も行なったので,合わせて報告 する.

2. 実験方法と実験セットアップ

本研究では励起誘起吸収の観測方法として Roth ら と同様の手法を用いた. つまり, はじめに Ti:Sapphire 結晶を波長 520 nm の緑色 LD で励起しておき, その 後波長 451 nm もしくは波長 478 nm の LD を重畳した 際の出力の経時的な変化を測定することで観測実験 を行なった (Fig.1). このとき, 波長 451 nm, 478 nm, 520 nm の LD のシリンドリカルレンズ対での励起ビー ムの遅軸方向の拡大率はそれぞれ 7.5 倍, 6.6, 6.6 倍 である. また, 緑色レーザと青色レーザはダイクロイ ックミラーによって合波され, f=60 mm の集光レンズ によって Ti:Sapphire 結晶 に集光されている. Ti:Sapphire 結晶は Castech 社製のものであり, FOM (Figure of merit) 200 である. ここで, FOM は波長 800 nm の吸収係数に対する波長 532 nm の吸収係数で 定義される.

Fig.1 励起誘起吸収による出力の経時的な減少[1]

Fig.2 励起誘起吸収観測の実験セットアップ

3. 励起誘起吸収の観測

最初に励起光源に波長451 nmと波長520 nmを用い た観測実験を行なった (Fig. 3). 最初に波長 520 nm の LD のみで励起を行い, その後, ある時間に波長 451 nm, 吸収パワー1460 mWの励起光を加え重畳励起を 行なった.その結果,重畳後は出力が70mW程度ま で上昇したが、10秒程の間に出力が急激に減少し、 その後100秒程の間に定常状態になった.また,波長 451 nm の励起光を遮ると、出力は当初の 18 mW より も低くなったが、緩やかに出力は回復し、最終的に元 の18mWで定常状態となった.この結果はRothらが 指摘した現象と同じであり、我々も波長451 nmにお いて励起誘起吸収の存在を観測することができた. また, 我々は Fig. 4 に示すように波長 451 nm の入射 パワーを 0.5, 1.0, 1.5, 2.0 W と変化させたときのレ ーザ出力の比 P/P0を計測した.ここで,P は経時的に 変化するレーザ出力であり、P0は重畳励起直後のレー ザ出力 (= 70 mW) である. さらに, 我々は Ti:Sapphire 結晶を波長 451 nm の LD 単体で励起をした際の経時 的な出力変化も測定したが, 出力変化は観測されなか った (Fig. 5). 次に, 同様の実験を波長 451 nm の LD を波長 478 nm の LD に取り替えて行なったが, 重畳 励起直後の出力の変化は観測されなかった (Fig. 6). この結果から, 波長 478 nm においては励起誘起吸収 が起こっていない, もしくは影響が極めて小さいこと がわかる.

Fig. 3 励起波長 451 nm を用いた際の励起誘起吸収の 観測結果

Fig. 4 波長 451 nm の吸収パワーを変化させたときの P/P0 の比較

Fig.5 波長451 nmのLD単体で励起した際の出力変化

Fig. 6 励起波長 478 nm を用いた際の励起誘起吸収の 観測結果

4. 励起誘起吸収のレーザ特性への影響の比較

励起誘起吸収のレーザ特性への影響を定量的に評価するために、励起波長を451,478,520 nmと変えたときの3つの異なるTi:Sapphire結晶におけるスロープ効率を測定し、共振器内損失の比較を行なった.共振器内損失の推定にはFindlay-Clay解析[7]および、Caird解析[8]を用いた.我々がレーザ特性の解析に用いた3つのTi:Sapphire結晶は、それぞれ製造元が異なるが、Ti³⁺のドープ濃度はどれも0.25 wt%である.これらのTi:Sapphire結晶をそれぞれ結晶A、B、Cとおいたとき、結晶A、Bは結晶長が2.5 mmであり、結晶Cは結晶長が4 mmである.Fig.7にレーザ特性の測定に用いた実験セットアップを示す.本実験において、Ti:Sapphire結晶での計算されるモードマッチング効率は各波長451,478,520 nmでそれぞれ~57%、~82%、~81%である.

Fig. 7 Ti:Sapphire レーザの特性測定のための実験セッ トアップ

このとき,各励起波長,各 Ti:Sapphire 結晶において4 つの透過率の異なる OC を用いた際のレーザ特性の比 較を Fig. 8 に示す.また,このときの発振閾値および,

スロープ効率の測定結果を Table. 1 に示す. Fig. 8 で は、全ての結晶において励起波長が短波長側になるに つれて明らかにスロープ効率が減少している.特に励 起波長 478 nm においては, Fig. 6 で出力の減少が観測 されなかったにも関わらず, 波長 520 nm と比べてス ロープ効率が減少している.また,最もレーザ特性の 良かった結晶 A についても励起波長 451 nm では他の 結晶と同程度まで特性が悪化しており, Ti:Sapphire 結 晶の励起光源として波長 451 nm は適切ではないこと がわかる. Table. 1 では Findlay-Clay 解析と Caird 解 析の間に不一致が見られるが,これはスロープ効率を 決定する際に必要な励起出力の閾値の測定が完全で はないために生じると考えられる.3つの結晶におい て、実効的な FOM は励起波長が短波長側になるにつ れて顕著に減少していくのは Table 1 からも明白であ る. Roth らは同様の解析で結晶長 5 mm の Ti:Sapphire 結晶において波長458 nm で励起されたときの残留損 失が~1%増加すると推定しており[1], 我々の実験結 果と定性的に一致する.

Fig. 8 レーザ特性の比較

Table 1 Summary of pump-induced loss α_{785} analysis by the Findlay-Clay plots (α_{785} , FC) and the Caird's plots(α_{785} ,

	Output Coupling	Crystal A (I=2.5 mm)							
		Pth	none	@785.FC	a785.c	$\alpha_{\rm pump}$	abump	a _{pump}	
	(%)	(mW)	(%)	(cm-1)	(cm-1)	(cm-1)	/a785, FC	/a785, C	
520 nm	2.1	332	30.9	0.066	0.018	5.90	89.4	328	
Pumping	3.4	370	34.9						
	4.7	471	38.0						
	6.3	577	38.6						
478 nm	2.1	482	19.2	0.078	0.048	6.62	84.9	138	
Pumping	3.4	652	26.6						
	4.7	757	28.2						
	6.3	855	29.2						
451 nm	2.1	827	7.3	0.084	0.032	4.04	48.3	126	
Pumping	3.2	975	8.9						
	4.7	1185	10.0						
	6.3	1401	10.2						

	Output	Crystal B (I=2.5 mm)								
	Coupling (%)	Pth (mW)	12tope (%)	<i>a</i> ^{785,FC} (cm ⁻¹)	a _{785,C} (cm-1)	(cm-1)	а _{ритр} /а _{785, FC}	а _{ритр} /а _{785, С}		
520 nm	2.1	495	13.3	0.055	0.106	4.24	77.1	40.0		
Pumping	3.4	638	18.1							
	4.7	842	23.0							
	6.3	926	25.1							
478 nm	2.1	567	14.2	0.081	0.078	4.72	58.3	60.5		
Pumping	3.4	723	17.2							
	4.7	813	19.1							
	6.3	994	30.0							
451 nm	2.1	864	6.2	0.107	0.133	2.93	27.4	22.0		
Pumping	3.2	1018	8.5							
	4.7	1188	11.2							
	6.3	-	-							
	Output	Countral C (In 4 Oppose)								
	Coupling	D.	12.	<i>(</i> /	/ sui c (i = i	Johning				
	(%)	(mW)	(%)	(cm-1)		~~	a	a		
520 nm			(,,,)	(cm -)	(cm-1)	(cm-1)	<i>Ф</i> ритр / <i>а</i> 785, FC	а _{ритр} /а _{785, С}		
Pumping	2.1	432	11.9	0.045	(cm-1) 0.044	α _{pump} (cm·1) 5.19	<i>а</i> _{битр} / <i>a</i> _{785, FC} 115	a _{pump} /a _{785,C} 118		
	3.4	432 515	11.9 15.6	0.045	(cm-1) 0.044	α _{pump} (cm·1) 5.19	а _{ритр} _/a _{785, FC} 115	а _{ритр} _/а _{785,С} 118		
	2.1 3.4 4.7	432 515 631	11.9 15.6 17.2	0.045	0.044	2/pump (cm-1) 5.19	<i>Ф</i> итр / <i>a</i> _{785, FC} 115	а _{ритр} /а _{785,С} 118		
	2.1 3.4 4.7 6.3	432 515 631 761	11.9 15.6 17.2 17.6	0.045	0.044	2/pump (cm-1) 5.19	<i>a</i> _{bump} _/a _{785, FC} 115	a _{pump} /a _{785,C} 118		
478 nm	2.1 3.4 4.7 6.3 2.1	432 515 631 761 658	11.9 15.6 17.2 17.6 10.6	0.045	0.105	α _{pump} (cm ⁻¹) 5.19 5.76	26ump /a785, FC 115 68.6	a _{pump} /a _{785, C} 118 54.9		
478 nm Pumping	2.1 3.4 4.7 6.3 2.1 3.4	432 515 631 761 658 772	11.9 15.6 17.2 17.6 10.6 15.6	0.045	0.105	α _{pump} (cm ⁻¹) 5.19 5.76	а _{ритр} /a _{785, FC} 115 68.6	a _{pump} /a _{785, C} 118 54.9		
478 nm Pumping	2.1 3.4 4.7 6.3 2.1 3.4 4.7	432 515 631 761 658 772 862	11.9 15.6 17.2 17.6 10.6 15.6 17.9	0.045	0.105	α _{pump} (cm ⁻¹) 5.19 5.76	<i>4</i> _{битр} / <i>a</i> _{785, FC} 115 68.6	a _{pump} /a _{785, C} 118 54.9		
478 nm Pumping	2.1 3.4 4.7 6.3 2.1 3.4 4.7 6.3	432 515 631 761 658 772 862 1004	11.9 15.6 17.2 17.6 10.6 15.6 17.9 19.9	0.045	0.105	2 gamp (cm-1) 5.19 5.76	46ump /a785.FC 115 68.6	a _{pump} /a _{785, C} 118 54.9		
478 nm Pumping 451 nm	2.1 3.4 4.7 6.3 2.1 3.4 4.7 6.3 2.1	432 515 631 761 658 772 862 1004 1154	11.9 15.6 17.2 17.6 10.6 15.6 17.9 19.9 5.1	0.045	0.112	2 gamp (cm-1) 5.19 5.76 3.46	4µmp /a785.FC 115 68.6 32.3	a _{pump} /a _{785, C} 118 54.9 30.9		

 4.7
 1479
 9.1

 6.3
 1632
 9.5

5. 励起誘起吸収のメカニズム

我々の実験結果と Roth らの実験結果から、明らか に波長 450 nm 付近では励起誘起吸収が存在すること がわかる. Ti:Sapphire を青色励起した際の損失の上昇 については同様の現象を Hoffstadt らが 464 nm の励起 実験において既に確認している[9]. 彼らはこの現象は Ti³⁺とTi⁴⁺の電荷遷移が原因だと主張している.Ti³⁺の 上準位が 2.01 eV であり、これに励起光の 464 nm (2.67 eV)の励起準位吸収が起こることで 4.68 eV の励起エ ネルギーとなる. これは電荷遷移によって Ti³⁺から Ti⁴⁺へ変化するのに必要なエネルギーに相当する. そ のため、Ti⁴⁺の濃度が上昇し、赤外吸収が上昇したと 説明している. また, Wong らも Ti³⁺の基底準位から Ti⁴⁺への電荷遷移閾値は4.7 eV だと報告しており[10], 両者の主張は一致している. Fig. 9 に Ti³⁺と Ti⁴⁺の概略 的なエネルギーバンド図,および励起光によって誘起 される電荷遷移を示す. Fig. 9 において, 波長 451 nm の光は励起状態の Ti³⁺から Ti⁴⁺への電荷遷移を誘発す ることができる. また, 波長 451 nm の光は Ti⁴⁺から Ti³⁺への可逆的な電荷遷移も引き起こす.実際,Wong らは基底状態の Ti⁴⁺から Ti³⁺への電荷遷移のための閾 値は 4.17 eV であると報告している[10]. 一方, 波長 520 nm の光はレーザ出力の悪化を回復させるが、こ れは Ti4+から Ti3+への電荷遷移を誘起しているからで ある.しかし、緑色光の光子エネルギーは励起状態の Ti³⁺から Ti⁴⁺への電荷遷移を誘起するにはエネルギー

が足りない. また, 波長 520 nm の LD を波長 478 nm の LD に取り替えて Fig. 3 の実験を行ったところ, 同 様に波長 451 nm の光を重畳した際に経時的な出力の 低下が観測された. この結果から, 波長 478 nm およ び 520 nm の LD は逆方向の電荷遷移誘起において同 じ役割を果たしていることがわかる.

Fig.9 Ti³⁺とTi⁴⁺のエネルギーバンドおよび電荷遷移

5. 波長多重励起モード同期 Ti:Sapphire レーザ

我々は波長 520 nm と波長 478 nm の LD をそれぞれ 2つずつ励起光源に用いることで波長多重励起 Ti:Sapphire レーザ実験を行なった. CW 実験とモード 同期実験の実験セットをそれぞれ Fig. 10, 11 に示す. Ti: Sapphire 結晶には Fig. 8 の結晶 C を用い, 励起吸収 パワーは 2.8 W であった. Fig. 12 に OC の透過率を 3.4%, 4.7%, 6.3%と変化させたときの入出力特性を 示す.入出力特性の取得は,最初に波長 478 nm の LD の印加電流を下げ,その後波長 518,520 nm の LD の 印加電流を下げることで行った. Fig. 12 に示すよう に、より高い透過率の OC に変化させたときに閾値お よびスロープ効率の増加が観測され,結果的に透過率 6.3%のOCを用いたときに最大出力370mWが得られ た. 各励起波長に対する CW 動作の特性を比較すると, 波長 520 nm で励起した場合のスロープ効率は,波長 478 nm で励起した場合よりも常に良かった.これは, 波長 520/785 対 478/785 の量子効率が部分的に影響し ていることが考えられる.

Fig. 10 CW 実験のセットアップ

Fig. 11 モード同期実験のセットアップ

Fig. 12 OC の透過率を変えた際の出力比較

SESAM モード同期実験では共振器内に3枚のチャ ープミラーを挿入することによって,共振器一往復で -600 fs²の負分散量を加えている(Fig. 11).モード同 期動作での最大出力は190 mW であり,スペクトル幅 は7.0 nm,自己相関波形から得られたパルス幅は98 fs であり(Fig. 14),フーリエ限界とほぼ一致した.ま た,繰り返し周波数は186.4 MHz であった.しかし, Gurel ら[5]の実験結果と比較すると,本実験は先行研 究の出力には及ばない結果となった.この原因として, 励起光源に用いた Aquamarine-LD のスロープ効率が 緑色 LD と同程度まで得られなかったことが考えられ

る. 波長 478 nm において, Fig. 6 の実験では出力の経 時的な変化は観測されなかったが,結晶毎のレーザ特 性を比較した Fig. 8 の実験結果では, 波長 478 nm に おいても波長 451 nm 程ではないがスロープ効率の減 少が観測され,比較的小さいながらも励起誘起吸収の 影響があることがわかった.また,SESAM を挿入し た際の共振器内損失の増加も大きな原因である.本研 究で使用した SESAM の非飽和損失は,先行研究で使 われたものと比べて大きいことが予想される. そのた め,モード同期時には CW 出力と比べて大幅に出力の 低下が見られた. このような原因を考慮すると, 理想 的にはモード同期手法はカーレンズモード同期が望 ましい. 今後は共振器設計や実験方法, 実験手順など, 励起光にビーム品質の悪い光源を用いた際も安定的 にカーレンズモード同期を実現するための手法の確 立が必要となるであろう.

Fig. 14 自己相関波形

References

 P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, "Directly diode-laser-pumped Ti: sapphire laser." Opt. Lett. 34, 3334 (2009).

- P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, "Direct diode-laser pumping of a mode-locked Ti:sapphire laser.," Opt. Lett. 36, 304–6 (2011).
- [3] C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, "Direct diode-pumped Kerr-lens mode-locked Ti: sapphire laser." Opt. Express 20, 13, 13677-13683 (2012).
- [4] S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, "Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser." Appl. Phy. Express 7, 022702 (2014).
- [5] K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, a. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer, "Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power," Opt. Express 23, 30043 (2015).
- [6] D. Findlay, R.A. Clay, "The measurement of internal losses in 4-level lasers", Phys. Lett. 20, 277 (1966).
- [7] J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L.L. Chase, and W. F. Krupke, "Quantum electronic properties of the Na3 Gas2 Li3 F12: Cr3+ laser"IEEE J. Quantum Electron. 24, 1077 (1988).
- [8] A. Hoffstädt, "Design and performance of a high-average-power flashlamp-pumped Ti: Sapphire laser and amplifier," Quantum Electron. IEEE J. 33, 1850–1863 (1997).
- [9] W. C. Wong, D. S. McClure, S. A. Basun, and M. R. Kokta, "Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitations," Phys. Rev. B51, 5683-5692 (1995)