光ファイバを用いたスクイズド光並行生成に関する数値解析 Numerical Analysis of Parallel Generation of Squeezed States with an Optical Fiber 保坂有社 (M2),川森泰貴 (B4)

Aruto Hosaka, Taiki Kawamori

Abstract

We calculate the nonlinear Schrödinger equation that is coupled with phonon fields in multimode description. In this report, we reveal potential of fiber nonlinear effects as a multimode squeezer by adapting a Williamson's decomposition scheme to the calculated covariance matrices among multimode quantum correlation.

1. はじめに

実用的な測定型量子計算機の実現に向けて、大規 模かつ高品質な連続量の量子クラスター状態を生 成するために様々なコンパクトなスキームが提唱 され、実験的にも実証されている。これらの先行研 究における実験では、電磁場の自由度(偏光、周波 数、波数)を利用して、クラスター状態を1つ、ま たは2つの光パラメトリック発振器(Optical parametric oscillator: OPO)から生成することに成功 している[1,2]。

一方で、スクイズド光生成の他の手法として、光 ファイバのカー効果を用いるものがある[3]。一般 的なカー効果を用いたスキームでは、OPO を用い るものに比べて安定性が高く、装置もコンパクトで ある。このスキームでは、高い3次の非線形光学効 果を得るために超短レーザパルスが用いられ、先行 研究においては-6.8dB のスクイズド光生成が報告 されている[4]。

フェムト秒パルスを光ファイバに入射したとき、 ファイバ中での四光波混合過程により出力パルス の周波数モード間には複雑な量子相関が形成され ることになる。この相関を解析することにより、可 分なスクイズド状態を得ることができる。しかし、 このような 3 次の非線形効果によって形成される 周波数間の量子相関の解析を詳細に行った例は未 だに報告されていない。

そこで、著者は光ファイバを用いたスクイズド光 モードの並行生成が可能なのかどうかを明らかに する。ファイバ中での四光波混合過程による周波数 モード間の複雑な量子相関を共分散行列で表し、ウ ィリアムソンの定理により解析することで、可分な スクイズド状態が発生可能かを解析することがで きる。我々はこの定理を適用することで、ファイバ の非線形伝搬によるスクイズド光モードの並行生 成に関する数値解析を行った。

2. 理論

ラマン散乱を含む古典非線形シュレディンガー方 程式は以下のように与えられる。

$$\begin{aligned} \frac{\partial}{\partial z}A(z,t) &= i\sum_{k\geq 2} \frac{i^k \beta_k}{k!} \frac{\partial^k}{\partial t^k} A(z,t) \\ &+ i\gamma(1-f_r) |A(z,t)|^2 A(z,t) \\ &+ \frac{i\gamma f_r}{2g_0} \frac{(\Omega_0^2 + \gamma_r^2)}{\Omega_0} \{b(z,t) + b^*(z,t)\} A(z,t) \ . \end{aligned}$$
(1)

ここで、A(z,t) はファイバ中のパルスの複素電界 振幅を表しており、 $t \ge z$ はそれぞれ位置と時間 に対応している。b(z,t) はフォノン場の複素振幅 を表しており、その時間発展はb(z,t) = $ig_0 \int_{-\infty}^{t} \exp\{-(\gamma_r + i\Omega_0)(t-\tau)\}|A(z,\tau)|^2 d\tau$ で与え られる。このときの $\gamma_r \ge \Omega_0$ はそれぞれファイバ の分子振動の減衰係数と共鳴周波数を表している。 また、 g_0 は光子と分子振動の結合係数となっている。 γ と β_k はそれぞれ、ファイバの非線形係数と k 次分散に相当する。 f_r は非線形分極に占めるラ マン散乱の割合を表している。

Ref. 5 に従って非線形シュレディンガー方程式を 量子化する。 $A \rightarrow \hat{A}$ と $b \rightarrow \hat{b}$ という量子化によ り、フォノン場の時間発展は以下のように書き換え られる。

$$\begin{split} \frac{\partial}{\partial t}\hat{b}(z,t) &= -\gamma_r \hat{b}(z,t) - i\Omega_0 \hat{b}(z,t) \\ &+ ig_0 \hat{A}(z,t) \hat{A}^{\dagger}(z,t) + \hat{n}_b(z,t) \ , \quad (2) \end{split}$$

ここで、 \hat{n}_b は熱浴に対する消滅演算子であり、 Eq. (2)はフォノン場の減衰に伴う熱浴との結合を 示している。また、このノイズ演算子 \hat{n}_b は交換関係、

$$\begin{bmatrix} \hat{n}_b(z,t), \hat{n}_b^{\dagger}(z',t') \end{bmatrix} = \frac{4g_0^2 \gamma_r \Omega_0}{f_r \gamma(\Omega_0^2 + \gamma_r^2)} \\ \times \delta(z-z') \delta(t-t'), \qquad (3)$$

と4つの相関、

$$\langle \hat{n}_{b}(z,t), \hat{n}_{b}(z',t') \rangle = \langle \hat{n}_{b}^{\dagger}(z,t), \hat{n}_{b}^{\dagger}(z',t') \rangle = 0 , \quad (4)$$

$$\langle \hat{n}_{b}(z,t), \hat{n}_{b}^{\dagger}(z',t') \rangle = \{ n_{\Omega}(T) + 1 \} \frac{4g_{0}^{2}\gamma_{r}\Omega_{0}}{f_{r}\gamma(\Omega_{0}^{2} + \gamma_{r}^{2})}$$

$$\times \delta(z-z')\delta(t-t') , \quad (5)$$

$$\left\langle \hat{n}_{b}^{\dagger}(z,t), \hat{n}_{b}(z',t') \right\rangle = n_{\Omega}(T) \frac{4g_{0}^{2}\gamma_{r}\Omega_{0}}{f_{r}\gamma(\Omega_{0}^{2}+\gamma_{r}^{2})} \\ \times \delta(z-z')\delta(t-t') , \qquad (6)$$

を満たす。ここで、 $n_{\Omega}(T)$ は温度 Tにおける平均 分子数を表しており、これは $n_{\Omega}(T) = 1/\{\exp(\hbar\Omega_0/k_BT) - 1\}$ で与えられる。 $\hbar \ge k_B$ はそれぞれ Dirac 定数と Boltzmann 定数である。

また、 $\hat{A} = A + \hat{a}$ の線形化を用いることで、

$$\hat{a}(L,\omega) = \int_{-\infty}^{\infty} f(\omega,\omega') \,\hat{a}(0,\omega')d\omega' + \int_{-\infty}^{\infty} g^*(\omega,\omega') \,\hat{a}^{\dagger}(0,\omega')d\omega' + \int_{0}^{L} \int_{-\infty}^{\infty} f_R(\omega,z',t') \hat{n}_b(z',t')dt' dz' + \int_{0}^{L} \int_{-\infty}^{\infty} g_R^*(\omega,z',t') \hat{n}_b^{\dagger}(z',t')dt' dz' ,$$
(7)

という形式に書き換えることができる。これを離散 化することで、

$$\hat{\mathbf{a}}(N) = F \hat{\mathbf{a}}(0) + G^* \hat{\mathbf{a}}^{\dagger}(0) + F_b \hat{\mathbf{n}}_b(N) + G_b^* \hat{\mathbf{n}}_b^{\dagger}(N), \qquad (8)$$

となり、â, î に対してそれぞれ直交位相振幅のベク トル î, î_bを定義すれば、

$$\hat{\mathbf{r}}(N) = Z\hat{\mathbf{r}}(0) + Z_b\hat{\mathbf{r}}_b(0), \qquad (9)$$

が得られる。共分散行列は、

$$C(n) = \{\hat{\mathbf{r}}(n), \hat{\mathbf{r}}^{\mathrm{T}}(n)\},\tag{10}$$

で定義され、(9)式を用いることで、

$$C(N) = ZZ^{\mathrm{T}} + [2n_{\Omega}(T) + 1] \frac{4g_0^2 \gamma_r \Omega_0}{f_r \gamma(\Omega_0^2 + \gamma_r^2)} \times Z_b Z_b^{\mathrm{T}} .$$
(11)

というように表すことができる。ウィリアムソンの 定理により、共分散行列は以下のように対角化する ことができる。

$$C(n) = S^{\mathrm{T}}\sigma S, \qquad (12)$$

ここで、 $S \in \text{Sp}(2N, \mathbb{R})$ かつ $\sigma = \bigoplus_{k=1}^{M} \begin{pmatrix} v_k & 0 \\ 0 & v_k \end{pmatrix}$ である。さらに、シンプレクティック行列はオイラー分解することができる。

$$S = O_2 \Lambda O_3. \tag{13}$$

ここで、 $O_2, O_3 \in K(N) = Sp(2N, \mathbb{R}) \cap SO(2N)$ であ り、 Λ は対角行列、 $\Lambda = diag(\lambda_1, 1/\lambda_1, \dots, \lambda_N, 1/\lambda_N)$ である。 O_3 は出力の可分なスクイズド光の基底を 表しており、各モードのスクイージングレベルは、 $C'(n) = O_3^T VO_3$ の対角成分で与えられる。

3. 計算結果

まず、異常分散領域におけるパルスのファイバ伝 搬によるスクイズド光の生成に関して計算を行っ た。ファイバのパラメータを $\beta_2 = -20 \text{ ps}^2/\text{km}$, $\gamma = 2 \text{ W}^{-1}\text{km}^{-1}$ とし、3次分散以上は0とした。 高強度の入射古典パルスの波形をパルス幅125 fs (周波数半値全幅2.52 THz に相当), ピークパワー 2000 W の sech 形状であるとした場合の、計算結果 を Fig. 1 に示す。ファイバの温度は300 K、ファイ バ長は 20 cm を仮定した。

Fig. 1 (a) These figures shows calculation results assumed fiber nonlinear propagation in anomalous dispersion regime including Raman noise when L = 20 cm. (a) Normalized covariance matrix $C^{(n)} = C_{ij}/\sqrt{C_{ii}C_{jj}} - \delta_{ij}/2C_{ii}$. (b) shows noise levels of separable squeezed states.

その結果を Fig. 1 に示す。Fig. 1(a)は正規化され た共分散行列であり、Fig. 1(b)は各モードのスクイ ージングレベルを表している。この図から、並行生 成されるスクイズド光は2-3個程度であることが 判明した。Fig. 1(a)からわかる通り、共分散行列が 円形に近く、このような量子相関をもつ場合にはス クイズド光モードの並行生成数が少ないことが知 られている。このように円形の共分散行列になる要 因は、異常分散領域におけるパルス伝搬では波長分 散の影響で広帯域な位相整合が達成されないため だと考えられる。

そこで、次にゼロ分散領域におけるファイバ伝搬 を仮定した場合のスクイズド光モード並行生成に ついて検討を行うこととした。入射パルスの波形は ソリトンの計算の場合と同じであるとし、三菱電線 工業社製の Photonic crystal fiber を仮定した。この PCF のパラメータは $\beta_2 = 0 \text{ ps}^2/\text{km}$, $\beta_3 = 0.162 \text{ ps}^3/\text{km}$, $\beta_4 = 1.934 \text{ ps}^4/\text{km}$, $\gamma = 46.8 \text{ W}^{-1}\text{km}^{-1}$ となっている。

These figures shows calculation results when propagation of 2-cm PCF is assumed. (a) Normalized covariance matrix $C^{(n)} = C_{ij}/\sqrt{C_{ii}C_{jj}} - \delta_{ij}/2C_{ii}$. (b) shows noise levels of separable squeezed states.

その結果は Fig. 2 の通りである。Fig. 2(a)は正規化 された共分散行列であり、Fig. 2(b)は各モードのス クイージングレベルを表している。Fig. 1(a)の通り、 異常分散領域における伝搬と異なり、楕円型の広帯 域な位相整合が達成されていることがわかる。これ により、Fig. 2(b)のように数10個のスクイズド光 モードの並行生成が確認された。

このとき、最もスクイージングレベルの高いモー ドと2番目に高いスクイージングレベルを持つモ ードの複素電界スペクトルを示したものがFig.3で ある。スクイズド光の各モードのスペクトルはスク イージングレベルが高い方から順番にエルミート ガウシアン状になっている。これは、Ref.1にある 2次の非線形効果を用いた場合と同じである。

Fig. 3 Complex spectrum of separable squeezed mode. Solid and dotted lines correspond to amplitude and phase, respectively, and blue and red lines correspond to when m = 1 and m = 2, repectively.

4. 結論

スクイズド光生成のためにファイバを用いた場 合の、直交位相振幅の両方を含んだ周波数間量子相 関の解析手法について理論の構築を行った。この理 論は、オイラー分解を用いることで、ファイバを伝 搬する周波数ごとの直交位相振幅を直交モードに 分離し、マルチモードのスクイズド光のモード解析 を行うものである。また、フォノン場を量子化する ことで、この理論にラマン散乱の影響を含めること ができた。

ここで構築した理論を用いて、ソリトンパルスを 用いた場合と PCF を用いた場合の2通りの計算を 行った。その結果、ソリトンパルスにおいては、従 来の実験スキームで得られていたスクイージング レベルよりも高いレベルのスクイズド光が生成さ れていることが分かった。また、0分散伝播を実現 できる PCF を用いた場合には、広帯域な群速度整 合のおかげで、スクイズド光モードの大幅に並行生 成数が上昇することが分かった。

References

- J. Roslund, M. De Arau, S. Jiang, C. Fabre, N. Treps, Nat. Photonics 8, 109 (2014).
- [2] S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, Nat. Photonics 7, 982 (2013).
- [3] A. Hosaka, K. Hirosawa, and R. Sawada, Opt. Express 23, 2446 (2015).
- [4] J. Heersink, V. Josse, G. Leuchs, and U. L. Andersen, Opt. Lett. 30, 1192 (2005).
- [5] Y. Lai and S. S. Yu, Phys. Rev. A 51, 817 (1995).