フェムト秒レーザ直描によるネオジウムイオン添加結晶への導波路レーザ作製

Neodymium doped crystals waveguide laser fabricated by femtosecond laser direct writing

佐藤 琢哉 (B4), 山中 雄介 (M1), 廣澤 賢一 (助教) Takuya Sato, Yusuke Yamanaka, and Kenichi Hirosawa

Abstract

We fabricated channel waveguides in Nd:YVO₄and Nd:YLF crystals with 800-nm and 400-nm femtosecond laser pulses, respectively. The laser oscillation of Nd:YVO₄ at 1064 nm pumped by an 808-nm laser and Nd:YLF 1047 nm pumped by a 792-nm laser have been realized.

1. はじめに

フェムト秒レーザはその高いピークパワーによ り,様々な物質と非線形な相互作用を起こすことが できる.その一つが,フェムト秒レーザによる透明 材料内部の加工である.吸収を持たない波長のフェ ムト秒レーザを物質の内部に集光照射することに より,多光子吸収過程を経てマイクロ〜ナノサイズ サイズの屈折率変化が引き起こされる.この屈折率 変化を利用し,物質内部に光が導波伝搬できるよう な加工を施すことができる.フェムト秒レーザ照射 による導波路加工は,他のリソグラフィ等の加工方 法と比較して安価かつ簡便で自在に3次元構造の 加工できるという特徴を持っており,これまでにビ ームスプリッタ[1] やブラッググレーティング[2] マッハツェンダー干渉計[3] など様々な光回路作 製に応用されている.

また、レーザ媒質となる固体材料内に描画された 導波路へ励起光を入射させることにより導波路レ ーザとして発振させることも可能である.これまで に, Nd:YAG[4], Nd:YVO₄[5], Pr:YLF[6], Tm:ZBLAN[7]など様々な結晶やセラミック,ガラ スでの導波路レーザの作製とレーザ発振が報告さ れている.

今回, 我々は Nd:YVO₄, Nd:YLF という 2 種類の ネオジムイオンドープ結晶に対して導波路の作製 を行った. バルク内部に加工するため, 加工用レー ザのスペクトルを各結晶固有の吸収スペクトルと 重ならないようにする必要がある. Nd:YVO₄ 結晶 加工の際には 800 nm フェムト秒レーザーの長波長 成分のカット, Nd:YLF 結晶加工の際には第二高調 波発生(SHG)により, 加工用レーザの波長をチュー ニングした. また, 各結晶に書き込まれた導波路対 し, CW チタンサファイアレーザを励起光としてレ ーザ発振に成功した.

2. 導波路作製

本実験では, CPA (Chirped Pulse Amplification) シ ステムによって増幅されたモード同期チタンサフ ァイアレーザ(繰り返し周波数1kHz,中心波長 805 nm, フーリエ限界パルス幅 50 fs)を用いて, Nd:YVO4 結晶 (20 mm ×10 mm ×0.5 mm(c 軸)), Nd:YLF 結晶 (5 mm ×5 mm ×2 mm(c 軸)) に対し導 波路加工を試みた.しかし, Fig.1 に示す CPA から の出力のスペクトルが, Fig, 2, 3 に示す各ネオジウ ム結晶の吸収スペクトルと重なってしまい,一光子 吸収が発生してしまう.もし入射パワーが低い場合, 入射したパワーのほとんどは集光位置に到達する 前に結晶に吸収されてしまい, 集光部分での屈折率 変化は発生しない. 逆に入射パワーが高い場合, 結 晶表面でのレーザのパワー密度が高くなってしま い,アブレーションが発生してしまう.したがって, 加工用レーザの波長と結晶の吸収波長が重なるこ

とは好ましくなく,加工用レーザの波長を変える必 要がある.

Fig. 1 Output spectrum of our CPA laser system.

Fig. 3 Absorption spectrum of Nd:YLF[8]

2.1 Nd:YVO4結晶加工

Fig. 2 に示す通り, Nd:YVO₄結晶は 800~820 nm 付近に強い吸収をもつ. したがって, Fig. 4 のよう にコンプレッサ内にナイフエッジを挿入し長波長 成分をカットすることで波長チューニングを行っ た. これにより得られた CPA のスペクトルを Fig. 5 に示す.

Fig. 4 Schematic of long wavelength cut in pulse compresser

Fig. 5 Output spectrum of writing laser for Nd:YVO₄

20×10×0.5(c 軸) mm³ の Nd:YVO₄結晶に対し, Fig. 6 に示すセットアップで導波路長が 10 mm のダブ ルトラック導波路を作製した.また,加工に用いた パラメータを Table 1 に示す.

Fig. 6 Experimental setup of Nd:YVO₄ fabrication (upper), Schematic of Nd:YVO₄ fabrication geometry (lower)

Table 1 Parameters for Nd:YVO₄ fabrication

Core diameter	25 μm, 50 μm
Writing speed	50µm/s, 200µm/s
Pulse deration	70 fs, 440 fs, 720 fs, 1150 fs
Pulse energy	7µJ/pulse, 3µJ/pulse

実際に加工された導波路を位相差顕微鏡にて観察した図を Fig. 7 に示す.この時,加工に用いたパラメータはパルスエネルギー7 μJ,加工速度 50 μm/s, パルス幅 70 fs である.

Fig. 7 Nd:YVO₄ waveguide written by 7 μ J/pulse, 50 μ m/s, 70 fs pulse duration

加工によって誘起された屈折率の変化を光学顕 微鏡の明視野像を用いて測定したところ[9],およ そ 1.0×10⁻³と見積もられた.したがって,作成され た導波路の NA はおよそ 0.063 である.

2.2 Nd:YLF 結晶加工

Fig. 3 に示す通り, Nd:YLF 結晶は 790~810 nm に強い吸収を持つ. したがって, Nd:YVO₄ 結晶と 同様の方法を用いることはできない. そこで, 我々 は CPA の第二高調波 (SHG) を用いて加工を行う ことにした.

SHG を発生させるために, TYPE II, 厚さ2mm の BBO 結晶を用いた.発生した SHG のスペクトルを Fig. 8 に示す.スペクトル幅が約2 nm であること から,基本波がフーリエ限界の時のパルス幅は約 120 fs と見積もられた.

Fig. 8 Output spectrum of writing laser for Nd:YLF

5×5×2(c 軸) mm³の Nd:YLF 結晶に対し, Fig.9 に 示すセットアップで導波路長が 5 mm のダブルト ラック導波路を作製した.また,加工に用いたパラ メータを Table 2 に示す.

Fig. 9 Experimental setup of Nd:YLF fabrication(upper), Schematic of Nd:YLF fabrication geometry(lower)

Table 2 Parameters for Nd:YLF fabrication

Core diameter	25 μm, 50 μm
Writing speed	50µm/s, 200µm/s
Pulse energy	3µJ/pulse, 1µJ/pulse

実際に加工された導波路を位相差顕微鏡にて観察 した図を Fig. 10 に示す. この時,加工に用いたパ ラメータはパルスエネルギー3 µJ,加工速度 50 µm/s, である.

Fig. 10 Nd:YLF waveguide transverse section written by 3 μ J/pulse 50 μ m/s

屈折率変化を Nd:YVO₄ 結晶と同様に測定したと ころ,およそ1.0×10⁻³と見積もられた.したがって, 作成された導波路の NA はおよそ 0.054 である.

3. 導波路特性計測

作製した導波路に,結晶の吸収がない波長にチュ ーニングした波長可変のチタンサファイアレーザ を入射し,導波路特性を計測した.コア径 50 μm の Nd:YVO₄結晶導波路の近視野像を Fig .11 に示す. このように,導波路内に十分光が閉じ込められてお り,導波路として機能していることがわかる.この とき,Vナンバーはトラック幅を a とすると,

$$V = \frac{\pi a N A}{\lambda} \approx 10.6$$

となり,2.405 を大きく超えているため,この導波路はマルチモードの導波路として機能している.

Fig. 11 Near-field image of Nd:YVO₄ waveguide (core diameter 50 μ m)

同様にNd:YLF結晶に作成したコア径 50 μmの導 波路の近視野像を Fig. 12 に示す.Nd:YVO4結晶と 比較すると,NA が小さい関係上,多少の染み出し があるものの,導波路として機能していることがわ かる.

Fig. 12 Near-field image of Nd:YLF waveguide (core diameter 50 μ m)

4. レーザ発振実験

波長可変のチタンサファイアレーザを励起光に 用い, Fig. 13 に示すセットアップでレーザ発振を試 みた.励起光はそれぞれの結晶の吸収がピークとな る波長に合わせた(808 nm (Nd:YVO₄), 792 nm (Nd:YLF)).

Fig. 13 Experimental setup of exciting optical system

Fig. 14 に Nd:YVO₄結晶の出力側で得られたスペ クトルを示す.入射パワーが高いときは,低いとき と比較して明らかに鋭いスペクトルが立っており, レーザ発振していると判断できる.また,Fig. 15 に,パルスエネルギー7 μJ,加工速度 50 μm/s,パル ス幅 70 fs の加工パラメータで作製された導波路へ の,入射パワーと出力パワーの関係を示す.この結 果より,コア径が 50 µm の導波路の入射パワーのし きい値はおよそ 700 mW,入射パワーに対するスロ ープ効率はおよそ 15 % であり,コア径が 25 µm の 導波路の入射パワーのしきい値はおよそ 400 mW, 入射パワーに対するスロープ効率はおよそ 20 % であった.また,加工エネルギー,加工速度,パル ス幅による結果の違いはほとんど見られなかった.

Fig. 14 Nd:YVO₄ emission spectrum change below and above the threshold pump power.

Fig. 15 Dependence of output power at 1064 nm on incident pump power

同様の実験を、Nd:YLF 結晶に対しても行った. しかし, 励起光のパワーを 1.5 W まで上げてもレ ーザ発振は得られなかった. そこで, 励起光の入射 面に接するように励起光全透過,発振光全反射の平 面ミラーを設置した. その結果, Fig. 16 のような 結果が得られ、レーザ発振が確認された.また、Fig. 17 に, コア径 50 µm, パルスエネルギー3 µJ, 加工 速度 50 µm/s, パルス幅 120 fs の加工パラメータで 作製された導波路への、入射パワーと出力パワーの 関係を示す.この結果より、入射パワーのしきい値 はおよそ 1.1 W, 入射パワーに対するスロープ効率 はおよそ31% であり、入射パワーを1.5Wまで上 げた時の最大出力パワーは 127 mW であった.加 エエネルギー,加工速度,パルス幅による結果の違 いはほとんど見られず, コア径が 25 µm の時は, 導 波路のNAに対し、集光のNAが大きすぎたため発 振しなかった.

Fig. 16 Nd:YLF emission spectrum change below and above the threshold pump power.

Fig. 17 Dependence of output power at 1047 nm on incident pump power

5. まとめ

フェムト秒レーザを集光照射することによりネ オジウムイオンドープ結晶内部に導波路を作製し, ビームクオリティの良いチタンサファイアレーザ を励起光に用いた導波路レーザの作製に成功した. た.導波路加工の際, Nd:YVO4 結晶加工には長波 長成分のカット, Nd:YLF 結晶加工には SHG を利 用することで,一光子吸収の起きるスペクトルをも つレーザによる加工を実現した.特に SHG による 加工は,広い吸収スペクトルを持つ結晶内部に加工 をする手段の一つとして期待できる.

References

- W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, "Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses.," Opt. Lett. 28, 2491–2493 (2003)..
- [2] A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, "Direct writing of fibre Bragg gratings

by femtosecond laser," Electron. Lett. 40, 1170 (2004).

- [3] Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, "Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser.," Opt. Lett. 33, 2281– 2283 (2008).
- [4] A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, "Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing.," Opt. Lett. **30**, 2248–2250 (2005).
- [5] Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, "Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO[sub 4] channel waveguides," Appl. Phys. Lett. 97, 031119 (2010).
- [6] S. Müller, T. Calmano, P. Metz, N.-O. Hansen, C. Kränkel, and G. Huber,
 "Femtosecond-laser-written diode-pumped Pr:LiYF4 waveguide laser.," Opt. Lett. 37, 5223–5 (2012).
- [7] D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, a Fuerbach, and M. J. Withford, "Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser.," Opt. Lett. **36**, 1587–9 (2011).
- [8] Northrop Grumman Corporation HP $\downarrow \vartheta$
- [9] E. D. Barone-Nugent, a. Barty, and K. a. Nugent, "Quantitative phase-amplitude microscopy I: Optical microscopy," J. Microsc. 206, 194–203 (2002).