相変化材料を用いた EIT デバイスの可能性に関する FDTD モデル解析

FDTD analysis on possibility of EIT based switching device using phase change material

草場 美幸(M2) Miyuki Kusaba

Abstract

We calculated the plasmonic electromagnetically induced transparency of nanostructures on a phase change material. The transmissive window changes depending on the surrounding medium and the distance of antenna.

1. はじめに

電磁誘導透過(EIT)は量子干渉効果で,狭いスペ クトル領域で光の吸収を減らすことが可能であり, 近年はスローライトの発生等にも利用されている。 媒質の分散関係の急激な変化は透過率の増加と関 連しており,屈折率が等価的に大きくなるので光を 十分に遅くすることが出来る。最近,EITのような 効果を古典的な発振器において生じさせることが できる,という事実に注目が集まっているが,プラ ズモン誘導透過は先送りにされてきた。

しかし,2009 年 Liu らによって実験的にプラズ モン EIT 現象が実証された[1]。彼らはまず二つの 層から成る金試料を作製した。上の層は励起光と強 く結びつき広いスペクトル幅を持つダイポールア ンテナの役割をする。一方,下の層は非放射の四重 極子アンテナとして働き,共鳴周波数はダイポール アンテナの吸収と一致する。四重極子アンテナの減 衰は,ほとんど固有の金属ロスのみに起因し,ダイ ポールアンテナの放射減衰に比べてとても小さい。 これらを接近させることにより,二つのアンテナは 強く結合し,結果として二つの励起経路が干渉し打 ち消しあうことにより EIT のような現象を生じさ せた。 一方, プラズモン場は周囲の媒質の屈折率によっ て異なることが知られている[2]。本研究では,相 変化材料を基板として, π型の金ナノ構造のプラズ モン EIT 現象の FDTD 解析を行なった。

2. FDTD シミュレーションモデル

本研究では、富士通の poynting という FDTD シ ミュレーションソフトを用いて計算を行なった。

基板として用いた相変化材料は Ge₂Sb₂Te₅(GST) と VO₂である。これらの相変化材料はそれぞれア モルファス相と結晶相,S相とM相の2つの相状 態を持つ。これらの複素屈折率は相状態によって大 きく異なり,その複素屈折率をFig.1に示す。

Fig. 1 Complex refractive index of (a) of $Ge_2Sb_2Te_5[3]$ and (b) $VO_2[4]$.

シミュレーションモデルは, Fig. 2 に示すように 厚さ 1500 nm の ITO(n=1.8)基板上に相変化材料を 置いた基板上に高さ 40 nm の金ナノ構造がπ型に配 置されているモデルである。y 方向に配置した金ロ ッドがダイポールアンテナの役割を,x 方向に配置 した2本の金ロッドが四重極子アンテナの役割を する。

Fig. 2 Simulation model.

3. FDTD シミュレーション結果

A. ITO 基板上のプラズモン EIT 現象

はじめに、相変化材料を用いずに ITO 基板上に 金ナノロッドを配置したときのプラズモン EIT 現 象の解析を行なった。ここでは、四重極子アンテナ 間の距離(D1)およびダイポールアンテナ-四重極子 アンテナ間の距離(D2)が EIT の形状にどのような 影響を及ぼすかを検証した。D1 を 10~120 nm ま で変化させたときの透過率の変化を Fig. 3 に示す。

Fig. 3 において, D1 が 10 nm のときはプラズモ ン EIT 現象は生じていないが, D1 を大きくしてい くと透過窓が波長 900 nm 付近で EIT 現象がはっ きりと生じていくことが分かった。D1 は四重極子 アンテナの性能を決定する値である。D1 が小さす ぎると四重極子アンテナとして働きにくくなるが, ある程度の値を持つ場合は EIT 形状に大きな影響 は与えないことが分かった。

次に, D2 を 10~30 nm まで変化させたときの透 過率と反射率,吸収率の変化を Fig. 4 に示す。Fig. 4 において, D2 を大きくしていくと透過窓は狭く なり,深さが小さくなって,さらに短波長側にシフ トしていくことが分かる。D2 はダイポールアンテ ナと四重極子アンテナ間の結合の強さを決定する 項であるため, D2 が大きすぎるとその結合は弱く なりプラズモン EIT 現象が生じにくくなることが 分かる。

Fig. 4 Reflection, transmission, and absorption changing D2.

B. 相変化基板上のプラズモン EIT 現象

次に, ITO 基板上に相変化材料を置いたときのプ ラズモン EIT 現象の解析を行なった。厚さ 5 nm の GST を ITO 基板上に設置して, D1 を 50 nm とし, D2 を 1~30 nm まで変化させたときの透過率の変 化を Fig. 5 に示す。Fig. 5(a), Fig. 5(b)はそれぞれ GST がアモルファス相と結晶相のときの透過率で ある。Fig. 5 において, どちらの相状態においても プラズモン EIT 現象が生じる D2 の距離が短くな っている。これは、GST によるプラズモン場の吸 収が大きく、アンテナ間が結合する距離が短くなっ ているためである。D2 が 2 nm のときにどちらの 相状態においても EIT 現象が見られ、EIT 透過窓 が狭くなっている。

(a)Amorphous phase. (b) Crystalline phase.

そこで, D2 を 2 nm として D1 を 10~130 nm ま で変化させたときの透過率の変化を計算した。その 結果を Fig. 6 に示す。Fig. 6(a), Fig. 6(b)はそれぞ れ GST がアモルファス相と結晶相のときの透過率 である。Fig. 6 においては, D1 が大きくなるにつ れて透過窓がはっきりと見られた。ダイポールアン テナはその端で最も電界が強くなるため, ダイポー ルアンテナの端に四重極子アンテナが近いほうが 効率よく結合する。そのため, D1 が 90 nm で最も プラズモン EIT 現象が強く見られた。D2 が 2 nm, D1 が 90 nm のときのアモルファス相と結晶相の透 過率を Fig. 7 に示す。GST の相状態をアモルファ ス相から結晶相に変化させることにより, 透過窓が 狭く深くなることが分かる。このように, GST の 相状態を変化することにより, プラズモン EIT 現 象の透過窓の大きさや波長を変化させることが可 能である。

Fig. 6 Transmission changing D1 on GST.(a)Amorphous phase. (b) Crystalline phase.

Fig. 7 Transmission on GST.

同様に、相変化材料を厚さ 10 nm の VO₂ とした とき、S 相と M 相の透過率を Fig. 8 に示す。この とき、D1、D2 がそれぞれ 50 nm、30 nm である。

110, 2051 (2006)

Fig. 8 Transmission on VO2.

Fig. 8 において, S 相から M 相に変化させること により, その透過率は大きくなることが分かる。さ らに, 透過窓は短波長側にシフトすることが分かっ た。VO2を用いた場合は GST の場合と比較すると 相状態による EIT 現象の変化は小さい。EIT 現象が 生じる波長帯域における相変化材料の複素屈折率 の差が EIT 現象の差に影響するためである。複素屈 折率差が大きな材料を選択することによって, 相状 態による EIT 現象の差も大きくなる。

4. まとめ

プラズモン EIT 現象は, プラズモン場と同様に周 囲の媒質の屈折率によって変化する。本研究におい ては,相変化材料の相状態によりプラズモン EIT 現象の透過窓の波長や大きさをスイッチ出来るこ とを FDTD シミュレーションを用いて示した。

References

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, Harald Giessen, Nature Materials, 8, 758 (2009)

[2] Z. Jian, D. Xing-chun, Li. Jian-jun, Z, Jun-wu, J. Nanopart. Res., 13, 953 (2011)

[3] S. Raoux, Annu. Rev. Mater. Res., 39, 25 (2009)

[4] G. Xu, Y. Chen, M. Tazawa, P. Jin, J. Phys. Chem. B,