800nm 帯 Super-continuum 光パルス波形整形用光学系の設計と構築 Design and Construction of Pulse Shaper for 800 nm Super-continuum Generated in an Ar gas filled Hollow Core Fiber

吉清健太(M1), 近藤昇平(M2), 大石裕(助教)

K. Yoshikiyo, S. Kondo, and Y. Oishi

Abstract

We designed and construct of thea pulse shaper for super-continuum pulses generated in an Ar gas-filled hollow core fiber. Since this pulse shaper employes has a prism pair s for angular dispersion, this pulse shaper resulted GDD and TOD of the prism pair must be compensated. We demonstrateed the compensation of those dispersion by another prism pair and a SLM in the pulse shaper.

1. はじめに

フェムト秒パルスレーザは超高速性、広帯域性、高強度 などの特性によりその応用は広い[1,2]。特にフェムト秒レ ーザに波形整形技術を用いた研究では、波形整形器制御が 可能となり、分子制御や量子制御など非常に興味深い研究 が数多く展開されている[3,4]。これらと並行して波形整形 技術も様々な研究がされ、近年では位相だけでなく振幅と 位相の同時波形整形や偏光波形整形が実現している[5,6]。 一方、古くから技術が確立されている位相波形整形は波長 帯域を広げ、Super-continuum光パルスの波形整形が行わ れている [7]。

Super-continuum (SC)光パルスを波形整形する場合、従 来の回折格子とレンズによる4f系ではスループットの低 下や色収差の問題街が生じる。そこでSC光パルスの波形整 形では角度分散にプリズム、コリメートに凹面鏡を用いる ことが多い。しかし、この時注意しなければいけないのは プリズムによる材料分散が生じてしまう点である。この材 料分散は大きすぎてしまうと波形整形器として機能しな いため、その場合は波形整器とは別に分散を取り除く光学 系が必要となる。

SC光パルスの波形整形は整形パルスの自由度が増すた め、高次の分散補償を目的とする以外にも分子制御や量子 制御などへの応用が期待できる。そこで我々も新しい分子 制御や量子制御の実現を目指し、SC光パルス波形整形用光 学系の設計と構築を行った。

2. 広帯域パルス波形整形用光学系の設計

Fig.1に広帯域ファムト秒レーザパルス波形整形用光学 系のセットアップを示す。中空ファイバを伝播後の広帯域 ファムト秒レーザパルスは、前述の通り、高効率化を実現 するためプリズムによって角度分散された。ただし、使用 したプリズムは分散量の大きい材料を選定しなければ、角 度分散によるビームの広がり角は小さく焦点距離が長く なり過ぎてしまうので本実験ではHOYA社製E-FDS01を用 いた。また、入射光が広帯域であるため色収差の影響も考 慮してレンズは使用せず凹面鏡(f=660)によるコリメート を行った。なお、本波形整形器は波長帯域を650~900nm に設定しており、各波長のフーリエ面での位置はFig.2 の ようになる。Fig.2よりこの波長帯域ではフーリエ面におけ るビームの幅が約31.9mmとなり、本実験で使用する波形整 形器 JENOPTIC 社製のSLM-S640の窓幅63.7mmに十分収 まることがわかる。

4f系の角度分散材料としてプリズムを用いた波形整形器 は高いスループットが期待できる一方でプリズムによる 分散が問題となる。特に、本実験のように角度分散の大き いプリズムを用いた場合、波形整形器として機能しない程 の分散を持ってしまう可能性がある。実際、本実験で使用 したプリズム E-FDS01 の分散によりFig.3(a)に示すよう に2次分散が大きく生じる結果となった。この状態では波 形整形器として機能するのは困難であると判断し、波形整 形器の前にプリズムペア(SF10)による分散補償を行う計画 を立てた。Table.1にセルマイヤーの分散式より各プリズム の分散量を見積もった結果を示す。なお、この時4f系内の プリズム E-FDS01は挿入量を14mm、プリズムペア(SF10) は距離41cm、挿入量を5mmとして見積もった。プリズムペ アによる分散補償をした結果をFig.3(b)に示す。Fig.3(b)よ りプリズムペアによる分散補償はほぼ完了した結果とな った。ただし使用したプリズムはサイズが小さく、広帯域 用ではない。

Fig.1 Schematic of a broadband pulse shaper used in this

research.

Fig.2 Calculated distribution of spectral components on the

Fourier plane of the broadband pulse shaper.

Fig.3 SPIDER measurements of the pulse: (a) before compression; and (b) after Compression by an external prism pair.

Table.1 The amount of dispersion in each stage.

	GDD [fs^2]	TOD [fs^3]	TOD [fs^4]
E-FDS1	7509.5	5424.4	1592. 1
prism pair	-7521.9	-23372.9	-28065.9
total	-6.2	-2991.4	-1103.1

3. 波形整形器の校正

波形整形器の光学系の配置が完了後、波形整形器の印加 電圧と位相変調量の校正を行った。この校正を行うセット アップとして、Fig.1 の角度分散プリズム(E-FDS1)直後に 1/2波長板を、波形整形器直後に偏光子と分光器を配置した。 このセットアップによって波形整形器は位相変調から強 度変調の波形整形器となるため、液晶素子への印加電圧と 位相変調量の関係が分光器で直接確認することが出来る。 Fig.4 に波形整形器の全液晶素子に同量の電圧を印加した 時の800nmの位相変調量を測定した結果を示す。波形整形 器として機能させる場合、位相変調量は2π以上あれば良 いため、本実験ではFig.4 の電圧値が150-550 [1/4095 V]の 区間を用いて位相変調を行った。

Fig. 4の印加電圧と位相変調量の関係は波長毎に異なり、 特に広帯域波形整形を行う場合ではその差は顕著に表れ る。このため、本来は各波長において校正値を取得する必 要があるが、この校正値は任意の波長の校正値があれば計 算で求めることができ、実験値と計算値に大差はないため 今回は計算により各波長の校正値を算出した。任意の波長 λ [nm]、電圧値U [1/4095 V]における位相変調量 ϕ (U, λ) は、 校正値のある波長を λ_m 、その校正値を Γ (U) λ_m 、液晶素子の 屈折率を Δ nとすると以下の式で求められる。

$$\phi(\mathbf{U},\lambda) = \Gamma(\mathbf{U})_{\lambda_{\mathrm{m}}} \cdot \frac{\lambda_{\mathrm{m}}}{\lambda} \cdot \frac{\Delta n(\lambda)}{\Delta n(\lambda_{\mathrm{m}})} \qquad (1)$$

$$\Delta n(\lambda) = \frac{\Delta n_{\infty} \cdot \lambda}{\sqrt{\lambda^2 - \lambda_0^2}} \qquad (2)$$

(但し、 Δn_{∞} =0.2002, λ_0 =327.44 nm)

式(1),(2)とFig.4の結果より600-900nmでの校正値をFig.5に 示す。

Fig.4 A calibration curve of phase for voltage measured at 800nm.

Fig.5 The calculated calibration curves of phase for applied voltage at various wavelengths.

4. 波形整形器による分散補償

第2章で述べたように、プリズムペア(SF10)により波形整 形器内のプリズム E-FDS01の分散補償はほぼ完了した結 果となった。しかし、Table.1で示したように3次分散はま だ完全に補償されていない。そこで、波形整形器を用いて 3次分散の補償を行った。Fig.6(a)に補償前、(b)に補償後の 結果を示す。なお、この実験において波形整形器には2000 fs³の3次分散を印加した。この値はTable.1の値と比べ若干 少ないが、その原因は測定パルスの波長帯域が狭いため高 次の分散の影響が少ないせいではないかと考えられる。

Fig.6 SPIDER measurements of the pulses : (a) before compression; and (b) after Compression by pulse shaper.

5. まとめ

本研究ではアルゴンガス充填中空ファイバにより発生 するSC光パルスを波形整形するため波形整形用光学系の 設計と構築を行った。本研究で構築した波形整形器は4f系 での角度分散材料としてプリズムを用いたことにより、2 次分散として約7500fs²、3次分散として約5400fs³の分散が 生じた。これらの分散の内、2次分散をプリズムペアで、3 次分散を波形整形器で補償することで分散補償を行った。 今後は、実際に希ガス充填中空ファイバによる発生するSC 光パルスの分散補償を試みる。

References

- [1] T. Sekiawa et al, Nature 432,605(2004)
- [2] M. Dantus et al, Chem. Rev., 104, 1813(2004)
- [3] H. Rabitz, et.al., Science, 292, 709 (2001).
- [4] M. Shapiro, et.al., Chem. Phys. Lett., 126, 6, 541, (1986).
- [5] T. Brixner et. al., Opt. Lett., 26, 557 (2001)
- [6] L. Polachek, et. al., Opt. Lett., 31, 631(2006).

[7] T.Binhammer, et al, IEEE J. Quantum Electron., 41, 1552(2005).