フェムト秒 EDFA 光源の ASE 雑音特性と出力波形に関する数値解析 Numerical analysis on ASE noise and output pulse shape for femtosecond EDFA lasers

桜井一充(B4),廣澤賢一(D1),田口修平(M1),百瀬嘉則(M1)

K. Sakurai, K. Hirosawa, S. Taguchi and Y. Momose

Abstract

We numerically analyzed the relationship between ASE noise and output pulse shape amplified by an erbium doped fiber amplifier (EDFA) at various conditions. Operation conditions to achieve lower ASE noise with small pulse shape distortion by fiber nonlinearity are investigated to apply EDFA sources for quantum communications.

1 はじめに

光ファイバを用いた光増幅には,ファイバ中の希土 類イオンなどのエネルギー準位を利用する方法と,誘 導ラマン散乱,誘導ブリルアン散乱などの三次の非線 形光学効果を利用する方法がある.希土類イオンを添 加した光ファイバによる増幅では添加物により増幅可 能な波長領域が決まり、利得帯域幅や利得係数などは ガラスの組成によって変化する.このような希土類ド ープファイバーが光増幅器およびレーザとして適して いるのは 低い入力で励起反応を高くでき, 相互作 用長が長いため単位長さ当たりの利得が小さくても十 分な結合利得が得られ, VAD, MCVD 法などの優れ たファイバ製造技術のおかげで低損失な導波路である こと,などがあげられる.その中でもエルビウム(Er) を添加した石英系ファイバは Er³⁺イオンの誘導放出波 長に 1.53~1.55 μm の遷移線があり,この波長帯がち ょうど光通信の最低損失波長帯にあるため同分野で注 目されており、この増幅器は一般に EDFA (Erbium Doped Fiber Amplifier)とよばれている.

我々は、小型で安定性が高いこのフェムト秒 EDFA 光源を使って,量子情報処理のコア技術であるもつれ あい状態生成に必要な真空スクイズド光(Squeezed Vacuum:SV)発生を目指して研究してきた[1].しかし、 EDFA で発生する ASE (Amplified Spontaneous Emission)によるビート雑音や SPM (Self Phase Modulation)、ラマン散乱といった非線形効果による量 子状態の変化といったものの影響を受け,量子ノイズの増大した準コヒーレント状態になっており[2],良質な SV が得られていない.

そこで本研究では EDFA の ASE 雑音特性と非線形効 果を考慮に入れた波形伝搬をそれぞれ文献[3][4]を参 考にして数値モデルを作成し, ASE の雑音指数(NF) が小さく, 非線形効果によりスペクトルが広がらな い条件を探した.

2 数値解析手法

EDFAのASE 雑音特性を数値解析するにあたり以下の伝搬方程式を解いた.

$$\frac{dP_s}{dz} = \rho \Gamma_s \sigma_s^a [(1+\alpha)N_2 - 1]P_s$$

$$\frac{dP_p}{dz} = \rho \Gamma_p \sigma_p^a [(1+\beta)N_2 - 1]P$$

$$\frac{dP_{f,b}}{dz} = u_{f,b} 2hv_s \Delta v_{eff} \Gamma_s \sigma_s^e \rho N_2 + u_{f,b} \Gamma_s \sigma_s^a \rho [(1+\alpha)N_2 - 1]P_{f,b_p}$$

$$N_{2} = \frac{\left[\frac{\Gamma_{p}\sigma_{p}^{a}}{v_{p}}P_{p} + \frac{\Gamma_{s}\sigma_{s}^{a}}{v_{s}}(P_{s} + P_{f} + P_{b})\right]}{\left\{\frac{hA}{\tau} + \left[\frac{\Gamma_{p}\sigma_{p}^{a}(1+\beta)}{v_{p}}P_{p} + \frac{\Gamma_{s}\sigma_{s}^{a}(1+\alpha)}{v_{s}}P_{s}(P_{s} + P_{f} + P_{b})\right]\right\}}$$
(2)

ここで P_p , P_s はポンプ光とシグナル光のパワー, P_f , P_b はそれぞれ前方伝搬と後方伝搬の ASE のパワーで ある. u は単に伝搬の向きを表しており, $u_{f=1}, u_{b=-1}$ である.また, EDFA のパラメータについては文献[3] を参考にエルビウムイオン濃度 $p=3.6 \times 10^{+24} \text{ m}^{-3}$, ポン プ光誘導放出係数 $\sigma_p^e=1.11 \times 10^{-25} \text{ m}^2$, ポンプ光吸収係 数 $\sigma_p^a=5.71 \times 10^{-24} \text{ m}^2$,シグナル光誘導放出係数 $\sigma_s^e=5.64$ × 10^{-24} m^2 ,シグナル光吸収係数 $\sigma_s^a=2.86 \times 10^{-25} \text{ m}^2$,有 効コア断面積 $A=8.5 \times 10^{-12} \text{ m}^2$,シグナル・ポンプの閉じ 込め係数 $\Gamma_p=\Gamma_s=0.5$ とした.また, $=\sigma_s^e/\sigma_s^a$, $=\sigma_p^e/\sigma_p^a$, N_2 は で規格化した上準位にあるイオン数である.ポ ンプ光波長は $_p=1.48 \ \mu m \ b \ b$,自然放出寿命 $\tau=10 \ ms$ で,hはプランク定数である.この式を元に,増幅器の 雑音特性を表す値である NF はファイバ入射時の SN 比をファイバ出射時の SN 比で割った以下の式から求 めた.

$$NF(L) = \frac{1}{G} \left[\frac{P_f(L)}{hv_s \cdot \Delta v_{eff}} + 1 \right]$$
(3)

ここで, *G* はシグナル光の増幅率, *L* はファイバ長で ある.

また,結果の検算は,エネルギー保存則より,

$$\frac{P_p(0)}{hv_p} + \frac{P_s(0)}{hv_s} = \frac{P_p(L)}{hv_p} + \frac{P_s(L)}{hv_s} + \frac{P_b(0)}{hv_s} + \frac{P_f(L)}{hv_s} + \frac{P_f(L)}{hv_s} + \int_0^L \rho \cdot \left(\frac{A}{\tau} - 4\Delta v_{eff} \Gamma_s \sigma_s^e\right) \cdot N_2(z) dz$$
(4)

から行った.

また EDFA 中のパルス伝搬を数値解析するにあたり 以下の非線形シュレディンガー方程式を解いた.

$$i\frac{\partial E}{\partial z} - \frac{\beta_2}{2}\frac{\partial^2 E}{\partial \tau^2} - i\frac{\beta_3}{6}\frac{\partial^3 E}{\partial \tau^3} + i\frac{\alpha}{2}E + \frac{n_2\omega_0}{c}|E|^2E$$

$$+i\frac{2n_2}{c}\frac{\partial(|E|^2E)}{\partial \tau} - \frac{n_2\omega_0}{c}T_R\frac{\partial|E|^2}{\partial \tau}E$$

$$= \frac{1}{4\pi}\gamma_0 \int_{-\infty}^{\infty} [f(\Omega) + ig(\Omega)]\widetilde{E}\exp(-i\Omega t)d\Omega$$
(5)

$$f(\Omega) = \frac{-\Omega T_2}{1 + \Omega^2 T_2^2}, \qquad g(\Omega) = \frac{1}{1 + \Omega^2 T_2^2}$$
$$\gamma_0 = \frac{\omega_0 \mu^2 T_2}{nce_0 \hbar} W_{ss}(z)$$

ここで二次分散 β_{2} =-21 ps²/km, 三次分散 β_{3} =0.13 ps³/km,非線形屈折率 n_{2} =3.2×10⁻²⁰ m²/W, ラマン応答 速度 T_{R} =5.9 fs,中心波長 λ_{0} =1.53 µm であり,µ₀ は真空 の透磁率である.また,双極子モーメント µ=5x10⁻³² C· m,ドーパント濃度 N_{0} =8x10²³ m⁻³ とした.さらに EDFA の線形伝搬特性を非線形伝搬特性の計算に組み込むた めに次式を用いた.

$$W_{ss}(z) = (2N_2 - 1)\rho$$
 (6)

3 数値解析結果

3-1 ASE 雑音特性と非線形伝播

まず、初期条件としてファイバ長を L=15 m とした. また入力シグナル光強度は我々の実験で用いている Imra 社製の EDFA レーザと同じ P_s(0)=1 mW とした. この条件で入力ポンプ光強度を0から10mWまで変化 させたときの NF と Gain の結果を Fig.1 に示した. この結果から Gain が1以上で,かつ NF が20 dB 以下 となる入力ポンプ光強度である1mW,2 mW,4 mW に関して、(5)式の非線形シュレディンガー方程式を解 き、スペクトルの変化を調べた(Fig.2).これをみると 入力ポンプ強度が1 mW の時点で,すでに三(三次分 散など漢数字と併用しているのでそろえる)次の非線 形効果である SPM がおきている(Fig. 2(a)).これ以上 入力ポンプ強度を下げると Gain が1以下となり EDFA の増幅の意味がないので、この条件では SV 生成に有効 な条件をみつけられなかった.

Fig.1 Dependence of the noise figure and gain on input powers into EDFA. The input signal power is 1 mW and the fiber length is 15 m.

3-2 非線形効果を低減させた場合

次にファイバ長,入力シグナル光強度は同じ 15 m, 1 mW のまま非線形効果を下げるために Er のドーパン ト濃度 p=3.6×10⁺²⁴ m⁻³から 1.0×10⁺²⁴ m⁻³に低減した 場合と有効コア断面積を A=8.5×10⁻¹² m²から A=8.0× 10⁻¹² m²に低減させた場合の ASE 雑音特性と出力スペ クトラムをそれぞれ調べた.これらの結果を同じ出力 強度で比較できるように,Gain=4.02 になるようなポ ンプパワーを入力した状態(?多分ポンプパワーだと思 うので)でのスペクトル波形を Fig.3 に示した.この

結果から,ドーパント濃度,コア断面積を下げる前は NF=7.02 であったのが,ドーパント濃度を下げた場合 は NF=3.22,コア断面積を下げた場合は NF=6.33 にそ れぞれ減少させることに成功した.

Fig. 2 Output spectra calculated from different input pump powers: (a) 1 mW, (b) 2 mW, and (c) 4 mW.

Fig. 3 :Dependence of the output spectra on erbium ion density ρ and cross-section area of the erbium-doped fiber core A. (a) ρ =3.6 × 10⁺²⁴ m⁻³, A=8.5 × 10⁻¹² m², and NF=7.02 dB. (b) ρ =1.0• 10⁺²⁴m⁻³, A=8.5 × 10⁻¹² m², and NF=3.22 dB. (c) ρ =3.6 × 10⁺²⁴ m⁻³, A= 8.0• 10⁻¹² m², and NF=6.33 dB.

この結果からドーパント濃度および有効コア断面積 を下げることにより、同じ Gain でも NFを低減させる ことができることがわかった.低減前と同じ利得を得 るには、入力ポンプ光強度を大きくする必要があるが, そのため EDFA が過飽和状態となり ASE が少なくなり NF が下がったのだと考えられる.

4まとめ

ファイバ長 L=15 m,入力シグナル光強度 P_s(0)=1 mW について入力ポンプ光強度を0から10 mWまで変化さ せたときの NF と Gain の変化を示し,この条件では SV 生成に有効な NFが小さく非線形効果によるスペク トルの広がりが少ないという二点を達成することは困 難であることを示した.またドーパント濃度,有効コ ア断面積を低減させることにより同じ Gain を得られ るときでも NF が小さくなることを示した.

References

[1]田口修平,百瀬嘉則,廣澤賢一:神成研究室 Annual Report 2005-2006,pp.57-61.
[2]百瀬嘉則,田口修平,廣澤賢一:神成研究室 Annual Report 2005-2006,pp.62-63.
[3]Kent Bertilsson and Peter A. Andrekson : Journal of lightwave technology 12, 7, pp.1198-1206 (1994).
[4]Sien Chi,Chir-Weei Chang and Senfar Wen : Optics Comm. 111, pp.132-136 (1994).